New Principles of transcription coupled DNA repair

Speaker:  Evgeny Nudler
Speaker Institute: Howard Hughes Medical Institute
Department: Bionanoscience Deparment
Subject: New Principles of transcription coupled DNA repair
Location: Building 58 (TU Delft)
Date: 24-11-2016

Author: Nemo Andrea  

Evgeny Nudler is a researcher working at the Howard Hughes Medical Institute. He has a PhD in biochemistry and does active research in the areas of Molecular Biology and Biochemistry. He gave a talk on Transcription Coupled Repair (TCR), a process by which the transcription of genes facilitates detection and removal of DNA damage.

The first part of the seminar covered the current and past understanding of Nucleotide Excision Repair (NER) and the factors that recruit the NER system towards sites of DNA damage. This made the lecture quite accessible, as this meant everyone had a good overview of the current understanding of these mechanisms in vivo. This brief section was, for me personally, quite enlightening. We had covered NER in various courses but this short recap greatly expanded on the interactions of NER and RNAP and various other factors. It was also fascinating to see how various components we had studied in various courses such as magnesium atoms in proteins are critical in the functioning of various mechanisms.

The main focus of his research was how transcription and the corresponding movement and stalling at sites of DNA damage of RNAP results in the recruitment of the NER complex. He introduced various systems related to RNAP and its stalling that were not covered in the nanobiology courses such as GreA and GreB. He touched upon the well known concept of how the stalling of RNAP results in the recruitment of factors and subsequent alleviation of DNA damage, but also stressed how other elements moving along the DNA such as the replisome, can cause double stranded breaks when they come into contact with a stalled RNAP complex. He stressed how double stranded breaks have strong detrimental effects on the cell and that therefore stalled RNAP complexes also had to have a way to transition from a stalled to active state again. The old model, which had been proposed in 1993 by Selby and Sancar (science, 1993), was centered around a protein called Mfd and featured a system in which the RNAP is pushed over the site of DNA damage, where after the NER complex would be recruited. In other words, this model was based on forward dislocation of the stalled RNAP.

The new model which Nudler and his lab proposes differs significantly from the old model, but still features RNAP stalling at sites of DNA damage as the event that recruits the NER complex. This new model is centrally based off the two proteins NusA and UvrD. These proteins would push the RNAP backwards rather than over the site of DNA damage, exposing the site in this backwards dislocation manner. He presented evidence for this in various experiments that showed that if UvrD was removed, cells became significantly more sensitive to DNA damage. Additionally, if factors such as GreA/GreB and Mfd were increased in cells, the cells also became more sensitive to DNA damage. This is because, as he explained, these factors are counter-backtracking factors – they prevent the RNAP from dislocating backwards, a fact that has been confirmed by other studies.

They then set out to figure out exactly how these factors could facilitate the backtracking of RNAP. To answer this question, they employed what Nudler called a ‘power technology’ that is known as XLMS to figure out where the proteins such as UvrD could bind to RNAP. Analysis by this method resulted in a probable binding site for UvrD on the ‘backside’ of the RNAP molecule (on the side of the RNAP molecule furthest away from the direction of movement). They also determined that a single UvrD molecule is not good enough to explain the backtracking of RNAP, suggesting that dimerisation may be required for this model to reflect the system. They found out that in dimer form, this complex consisting of two UvrD molecules and NusA could indeed facilitate the backtracking of RNAP, but also determined that this dimer form is unlikely to persist for a long time due the the low concentration of UvrD in the cell.

They also realised that this system must be very flexible, as the activity of TCR various greatly depending on the conditions of the cell (e.g. in case of cytotoxic stress, the system is very active) so they set out to find some of the regulating factors. They found out that the bacterial alarmone ppGpp played an important role in regulating this repair system. Given ppGpp’s function as an alarmone, this would certainly seem feasible. After that, they uncovered the system by which the ribosome trailing the RNAP is removed from the complex. This removal is critical, as this ribosome is closely connected to the RNAP and could prevent the backtracking functionality. Lastly, they uncovered mechanisms by which the stalled complex could be reactivated, preventing DNA damage by the replisome colliding with the stalled complex. They found that by hydrolysis of ppGpp and by introduction of counter backtracking factors such as Mfd and GreA and GreB could restart the stalled RNAP

[1] Left: Experimental Data and the new model; [2] Right: on the effect of ppGpp

It was very interesting to see various theoretical concepts be used to decipher important mechanisms inside the cell. Powerful concepts such as dimerisation, catalytic sites and NER all coming together to make a new model that more accurately reflects reality. It was also interesting to see how new technologies such as XLMS greatly facilitate new discoveries and open up new possibilities.

If you wish to read his full article on (part of) this topic, visit:


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s